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ABSTRACT (UNCLASSIFIED)

The tracking problem of unknown marine platforms using passive sonar
measurements is generally referred to as Target Motion Analysis (TMA).
This report describes the application of a Maximum Likelihood Estimation
(MLE) method to obtain position and velocity estimates of a platform
when bearing angle and frequency measurements are available from a
passive sonar system. The frequency measurements are related to one or
more cardinal frequency peaks from the radiated frequency spectrum by
the platform.

The MLE method offers the opportunity to use a multi-leg model, i.e. the
platform to be localized is assumed to move according to a piecewise
linear track, where each part is referred to as a leg. On each leg
constant course and speed is assumed. Additionally, bearing and
frequency measurements related to bottom reflections of the acoustical

signals can be used. —

In ref. [Gmelig Meyling, 1989-1) a Newton-type optimization method using B

first and second order derivative information of the residual functions [J

o

e
.

is proposed. By using the analytic expressions of the derivatives as
decribed in this report a major reduction of computation time is

accomplished.
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TNO report

Page

rapport mno. : FEL-89-A193
titel : Maximum Likelihood Estimation applied to Target Motion
Analysis using Second Order Derivatives.

auteur(s) ¢ Dr.ir. J.H. de Vlieger

instituut : Fysisch en Elektronisch Laboratorium TNO
datum : april 1991

hdo-opdr.no. : A87/KM/172

no. in iwp : 88/91: 705.1, 718.1

SAMENVATTING (ONGERUBRICEERD)

In het algemeen wordt het volgprobleem m.b.t. onbekende platforms op zee
waarbij passieve sonar metingen worden gebruikt Target Motion Analysis
(TMA) genoemd. Dit rapport beschrijft de toepassing van een Maximum
Likelihood schattingsmethode (MLE) om de bewegingsparameters van een
platform te schatten uit peilings- en frequentiemetingen die m.b.v. een
passief sonarsysteem worden bepaald. De frequentiemetingen zijn
gerelateerd aan een of meer pieken uit het door het platform uitgezonden
frequentiespectrum.

De MLE methode geeft de mogelijkheid een multi-leg model te gebruiken,
d.w.z. het platform wordt verondersteld te varen volgens een stuksgewijs
lineaire baan, waarbij elk stuk een poot genoemd wordt. Op elke poot
wordt een constante koers en vaart verondersteld. Tevens is het mogelijk
metingen te gebruiken die afkomstig zijn van bodemgereflecteerde
akoestische signalen.

In ref. [Gmelig Meyling, 1989-1) is een Newton-type
optimalizatiemethode voorgesteld die gebaseerd i op de eerste en tweede
afgeleiden van de residufuncties. Een belangrijke reduktie in de
benodigde rekentijd wordt bereikt door gebruik te maken van de in dit
rapport beschreven analytische uitdrukkingen voor de afgeleiden.
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1 INTRODUCTION

The tracking problem of unknown marine platforms using sonar
measurements is generally referred to as Target Motion Analysis (TMA).
This report describes the application of a Maximum Likelihood Estimation
(MLE) method to obtain position and velocity estimates of a platform
when bearing angle and frequency measurements are available from a
passive sonar system, such as a towed array. The frequency measurements
are related to one or more cardinal frequency peaks from the radiated
frequency spectrum by the platform.

The estimation problem is formulated as a Maximum Likelihood Estimation
problem (MLE) which is both non-linear and poorly conditioned. In
literature [Lindgren 1978, Aidala 1979, 1982, 1983] much attention is
paid to the application of Kalman Filters (KF) to solve bearings-only
TMA problems. In {Nardone, 1984] the fundamental properties if the
bearins-only TMA problem are discussed. An extended Kalman filter for
the bearing- and frequency measurement TMA problem is proposed in
[Ockeloen and Willemsen, 1982)]. However, in many situations Kalman
filters suffer from unacceptable bias and slow convergence caused by
inappropriate linearization of the non-linear TMA equations.

By using a proper numeric optimization method to obtain an ML estimate
the disadvantages of Kalman filters have been overcome at the cost of
more computational effort.

The optimization method in [Gmelig Meyling, 1989] is based on an
Corrected Gauss-Newton method combined with a Newton method and an
Active Set method to account for additional constraints on the
parameters to be estimated. The MLE approach offers the opportunity to
use a multi-leg model, i.e. the platform to be localized is assumed to
move according to a piecewise linear track, vwhere nach part is referred
to as a leg. On each leg uniform linear motion is assumed. The multi-leg
model is described as a linear state model in Cartesian coordinates with
non-llneir measurement equations. The MLE problem, however, is not

formulated in cartesian coordinates since it aims to estimate parameters
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which are used during real-time operation on board. The method also
accounts for bearing and frequency measurement equations related to
bottom reflections of the acoustic signals.

The Gauss-Newton method requires only the first order derivative
information of the residuals, whereas the Newton method also makes use
of the second order derivatives. In both methodes either finite
difference approximations or explicit analytic expressions of the
derivatives can be used. However, applying the explicit analytic
expressions leads to a large reduction in computation time, which is
much more attractive for real-time operation of the method.

This report has two objectives. First it recapitulizes the theoretical
background of the MLE method in view of the TMA problem. Second,
analytic expressions for the first and second order derivatives of the
residual with respect to the target parameters are presented. The
expressions are required by the Modified Newton Method as proposed in
[Gmelig Meyling, 1989-1].

The report is organized as follows. In Chapter 2 the TMA problem is
formulated. Section 2.2 introduces the multi-leg motion model, Section
2.3 discusses the parameters to be estimated and their relation to the
multi-leg model. In Section 2.4 the measurement equations are formulated
for both direct-path and bottom bounce propagation.

In Chapter 3 the MLE method is introduced and some properties of the MLE
are discussed such as bias and the Cramer-Rao lowerbound. In Chapter &
analytic expressions for the residual derivatives are determined.
Readers who are interested in the results only are recommended to skip
reading Chapter 4 and just to focus on the tables of Chapter 4, which
are recapitulized in Appendix B.
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2 TMA MODEL

2.1 Preliminaries
Throughout this report the following notation is used:

- Vectors and matrices are denoted in bold lower and upper case
respectively,

- Superscripts in parenthesis denote leg-index numbers.

- Variables related to own ship or target ship information have the
superscript 0S5 or TS respectively,

- Similar superscripts are used for direct-path (DP) and bottom-
bounce (BB) variables.

Two cartesian coordinate systems (X,Y) will be used where the x- and y-
axis are related to the geographical east and north. Absolute Cartesian
coordinates are defined such that the origin represents a fixed
geographical point, usually the own-ship position at the time instant of
the first measurement. The second, a relative Cartesian coordinate
system, moves along the own-ship track such that the own-ship stays at
the origin.

The advantage of Cartesian coordinates is that the absolute or relative
motions of both platforms can be described straightforward. So, the
relative uniform linear motion at time instant t, is represented by

(%, ¥ it' i&] vhere x , y, are the relative position and ik, ik

are the relative velocity components. The variables with superscript 0S

and TS are absolute position and velocity components:

% =x -
(2.1)

.
[ ]
w

o
] ]
LS
' 1

% "8 "% %

~3
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The position and velocity of the target will also be described in polar
coordinates (b, , R, C,, vi], where bk is the absolute bearing angle
taken from the geographical north (the y-axis of the cartesian system),
R, is the range between target ship and own ship, C, is the target ship
course angle taken from north, and v, is the target ship speed at time
t,. Note that the polar positfon coordinates are relative with respect
to the own ship while the polar velocity components describe the
absolute velocity of the target platform. The following relations
between Cartesian and polar variables hold:

|

b = Amlz(xk.yk)

R = (xF + y:)k (2.2)

aTanz (X5, §T%)

v, = ( i{s’ + 9{52 )8

o)
]

where the aravz function is defined by

ARCTAN(X/Y) y>0
, ® + ARCTAN(X/Y) y<0, x>0
' ATAR2(X,Y) = -x+ ARCTAN(X/y) y<0, x<0 (2.3)
x/2 y=0, x>0
-x/2 y=0,x<0

Figure 2.1 illustrates the definition of the position and velocity
parameters just described.
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North
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A
e
> East
1 Fig. 2.1: Position and velocity variables at time t,
2.2 Multi-Leg Model
The purpose of TMA is to estimate the position, velocity and frequency
parameters of an unknown platform from a set measurements {z ) at

measurement times (tk). The measurements consist of bearing angles and
frequency measurements from the sonar system, which can be obtained from
direct path or bottom bounce trajectories to the targetship. Moreover,
measurements about range, speed or course of the platform can be added

to the set. In the following we assume piecewise uniform linear motion

of the target ship (TS) and known position and velocity of the own ship
(0S).
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The TS motion can be described by the following difference equations in

cartesian coordinates:

T8 _ T8 $ 1), (1)
e I ifi‘G Tax
(2.4)

o
15 s (1) pti)
Yo =¥ ¥ 1§1 vyt Tax

1)
x !

ship which are assumed to be constant during leg i. The total number of

where v, v;“ are the absolute velocity components of the target

legs {s equal to m:

5 oy
RSN e -
AR Vi rUD <k <r L i=1,....m (2.5)
I =V
where 7Y and +*) {ndicate the beginning and end time of leg i, for
i =1, ...,m. In this report the manoceuvre r'*’ of the target ship are

assumed to be known, i.e. these values may be obtained by a manoeuvre

detection procedure. The time periods T;ﬁ are defined as

T = max(r? - t, 0) + max(r Y - t,, 0)

Nk 2.6
- max(r® — ty 0) - max(r‘“" -t, 0) ( )

The muli-leg track is illustrated by Figure 2.2.
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Fig. 2.2: The multi-leg model.

The multi-leg model is determined by the following discrete-time state

equation:
X = Bk
where
x - [ x:s y:s v:1) v;l). _____ vi.) V,;-) 17

(2.7)

(2.8)




TNO report

Page
12
(1 0 T o T o ... @ o |
0 1 o Th o Th ... o T
0 0 1 o o0 o ... 0 0
0 0 0o 1 0 0 ... o o
By = 0 0 0 0 1 o ... 0 0 (2.9)
0 0 0 0 0 ) S 0 0
..... 10
..... 0

If the model contains m legs the state x, contains 2(m+l) variables

which have to be estimated. Additional to these variables we also like
to estimate q unknown source frequency variables fux' foz' ..., £
These variables are assumed to result from cardinal peaks in the

0g "’

frequency spectrum of the target platform. The corresponding frequency
measurements contain a doppler shift caused by the radial motion
components of 0S and TS. Section 2.3 discusses the corresponding
measurement equations in detail. A frequency measurement related to time

t, and source frequency j will be denoted by ka.

The state equation (2.7) is now expanded by q additional equations:

fog(tn) - fo,a(tk) vk (2.10)

The result is a 2(m+l)+q dimensional state vector

- (1 (D ™ m
x=0lx vy v vl vy vyIn f (2.11)

T
01t " togq ]

and a transition matrix
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1) (m),
I, I Tt Tex'I, I 0 .q
(2.12)
S~ 0.2 I Orq
oq.z | oq.h l Iq

where I and O = indicate a n x n identity matrix and a m x n zero
matrix respectively. In the sequel of this report we will mainly use & .

which is the inverse of QNJ, i.e. Tﬁ: - - TiX'

2.3 Polar coordinates

For operational usage it is more convenient to use relative polar
position coordinates and absolute polar velocity coordinates per leg. We

introduce the polar state vector as

1y b (@ m
yvo-lb R C voo..., ¢ v f“,...,foq] (2.13)
with bk the absolute bearing angle, Rk the range, cv, v the Course
and Speed of the platform at leg 1 and faJ the j*" source frequency.
The transition from ¥, to y, can be determined by using the vector

transformation function F: x + y and its inverse G: y - x :

¥, = F(x)

(2.14)
x, = G(y)

The transformations F and G are determined by
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F b, = amas2(x.,y,)
2 2
R =(x + yx)k
) = aranz(vi®) v 2.15
S Ay {-1, m ( )
B E) R L A
x y
fo; - fog j=-1, . q
G: X = Resw b,
Yp = Rycosb,
v e @) g gD
x i=1, , m
v;” - v g5 CP
fo, - £, j=1, , q
Note that the own-ship position x:s, ygs is used implicitely by the
functions F(xk) and G(yk).
The transition from y, to y, and vice versa is now determined by
- F(d, .-G
Y (@ " 5(3,)) (2.16)

Y, = F®, +6(y,)

Note that the own ship position are assumed to be known in order to be

able to carry out the transformation.

2.4 Measurement Equations

The set of measured data generally consists of bearing angles and
frequency data which result either from a direct acoustic path (DP) or
from bottom bounce reflections (BB). The acoustic path is assumed to be

known, e.g., by using an acoustic propagation prediction model.
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Moreover, note that the multi-leg model does not take account of
variations in depth. Other type of measurements such as range, course
and speed of the target may be exploited (see Section 2.4.2). These
measurements may be available from other platforms or from information
about the underwater sound propagation conditions. Section 2.4.1. deals

with typical passive sonar measurements.

2.4.1 Direct path and bottom-bounce measurements
In case of direct path acoustics the equations describing the measured
bearings and frequencies are relative simple

b b

2. =b + v

k k x (2.17)

t _ £
z, fkj + v

where b, is defined by (2.2) and ka is specified by the following
relation:

fllJ - fOJ - foa {—L (2.18)
The scalar c represents the sound velocity in water (1500m/s) and ik
is the range rate (the relative radial velocity component) at time ¢,.
The measurement noise is represented by Gaussian noise processes v: and
V:J with normal distribution functions N(O,o:) and N(O,a{d).
The second term of the right-hand side in equation (2.18) is an
approximation of the doppler shift. Here we have assumed that the
measurement noise va has a larger magnitude than the approximation
error of the doppler term. Moreover, equation (2.2) and (2.18) only hold
in cases where the 0S and TS do not differ in depth. In case the target
and the own ship in reality move in different horizontal planes or the
bearing angles are related to bottom bounce reflections, the line of
sight is projected onto a horizontal plane. Figure 2.3 illustrates the
underlying model for the direct-path and bottom-bounce measurements. The
elevation angle ¥ depends on the range and the difference in depth D
between TS and 0S. The constant D is either equal to the real difference
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Dy, or to the apparent difference in depth Dy, in case of direct path or

bottom bounce signals, respectively:

D =D, - D

DP T8 os (2.19)
Dy = 2Dpp - Dy - Dy
where D, D,, and D, are the target ship depth, the own ship depth and

the sea depth. In most long-range cases the difference D,  -D . 1is
negligible. The measured absolute bearing angles b’F and b are obtained

from:

DP _ (0S DP
by G *+ B

W= 5 4 g 2.20)
k 3 k

where ﬁf’ or ﬁEB is the angle between the projected line of sight and
the 0S course as measured by the towed array sonar. ﬁgp and ﬂfB
depend on the elevation angle ¥. If a°f and o® are defined as the cosine

of the elevation angles \bDP and wnn respectively,

a®f = cos yp_, = __jR
°f  (R%DE,)
R (2.21)
aP® = cos Yo ™ (——?de-D:! )
then the bearing angles fF and f)° are equal to
anccos(a)f cos B,) , 0sp sn
-
~arccos ()’ co8 B,) xsp <0
(2.22)
nni08(a}® cos B,) , 0sp, s«
B -

-anccos(a)® cos §,) xS p <0
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where B, represents the actual azimuth of the TS with respect to the 0§

course:

b, - cgs + 8, (2.23)

In case of large range values the difference in depth D, -D, can be

neglected. The result is that bgp becomes equal to bk of (2.15).

When receiving bottom-bounce signals the frequency measurements will
have a different doppler component compared to the direct-path case. The
relative radial velocity between TS and 0S is represented by t. The
doppler shift is proportional to the projection of T on the bearing
line of the BB bearing angle:

%% ~ £ cos Ypp = af .

e

(2.24)

B~ feosyy, =ao .

e

(2.25)

The result is

t
DP DP_k
£ = £, (1 = o)

t
f:: = £, (1 ~ °:B_C'L) (2.26)

where fo; is the source frequency and c is the sound velocity.

In case of bottom-bounce the measurements are denoted by

b » b
z, =~ b + v
X k k (2.27)

t 88 £
2z, fkj + vy

b

where v,

and V:J are Gaussian noise processes as defined above.




TRO report

Page
18

SURFACE

SEA BOTTOM
~
~
~
REFLECTION N
POINT N
N
~Looo g
Fig. 2.3: Bottom-bounce bearing and frequency measurements.

Note that bJ® and fgj in (2.20, 2.22) and (2.27) reduce to simple

range independent forms if the difference in depth D’f between 0S and TS
is assumed to be zero. Moreover, if the angle between the line of sight
and the towed array is 90 degrees one cannot distinguish DP from BB

situations.

2.4.2 Additional measurements.

The additional measurements about range, course and speed are denoted by

R
z, =R + ":
z:u) - c 4 v: (2.28)

1) o G4)
z: vt 4 v‘k'
vhere v} ~ N(O0,d}), v ~ N(0,00) and v} ~ N(0,0}) are Gaussian
noise proceésses.
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3 MAXIMUM LIKELIHOOD ESTIMATION

3.1 TMA formulated as an MLE problem

This Section deals with the formulation of the general TMA estimation
problem assuming Gaussian distributed measurement noise. Suppose the

vector y, must be estimated from the measurement set Z, vhich contains
all types of measurements z, discussed in Section 2.4. Let's denote z;

as the variable to be measured at t:

25 = h(%,)

z, = z; + vy (3.1)

Z. - (zk' k=1,...,N}
where y: denotes the Gaussian noise process N (0,67) corresponding to

z, as defined in Section 2.4. The type of the function hk(yk) depends on
the measurement type at time t , i.e. hk is defined by (2.20) through
(2.23) in case of a bearing measurement or (2.26) in case of a frequency
measurement. The a posteriori probability density function is denoted by
p(y,12,). The maximum a posteriori (MAP) estimate is found for Yu = Yyix
such that p(y.lZ.) attains its maximum value. Using the Bayes rule and

taking the logarithm leads to

wop(yylZy) = w p(Z,ly,) + 1x p(yy,) — 1x p(Z) 3.2)

Since the last term does not depend on y, the MAP estimate can be found

by minimizing the function

1(y,) = =ix p(Z,|y,) - ¢ p(yy) 3.3)
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where the last term represents the a priori knowledge on Yo

If there 13 no a priori knowledge the MAP estimate reduces to the
maximum likelihood estimate, i.e. the last term of (3.3) is constant
vhen p(y,) is a uniform probability density function. Note that when a
priori knowledge 1s regarded as an additional measurement which also has
Gaussian statistics the MLE problem is in fact a speclal case of MAP

estimation.

The MLE problem is formulated as

mnin -8 p(Z,ly,) (3.4)

Yy

Since the measurements in Z' are assumed to be uncorrelated and

distributed according to N(0,0]), i.e.

Z ~z'
e { —M—j;—l)f ] (3.5)

-
p(z,12,) = ———
(2x) of M

The likelihood function p(Z,|y,) can be expressed as

N
P(Zyl7y) = P(24,....24l¥7) = 31 rz, 1y}
L L]
- xill p(zklzk) (3.6)

n 1 N Z -z,
- ()20 ) mp(~HZ (—x—zx-)’)
k=1 a: kel a:

The negative log-likelihood function becomes equal to

- p(Z,ly,) = M(Z,.y,) + 1% (2m)™? +§uc oy (3.7)
-1
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where £(y,) is equal to
x z-z
2Zuy) = E (NP (3.8)

x

In the following the weighted residual r,(y) is defined as
z -h (y)
r(y) = J—l:i—— (3.9
a
x

Further we denote the estimate of y, and z; based on Z, by Yy(n 806 Z
respectively. Now the MLE problem is reformulated as a non-linear

optimization problem:
min l(z‘,y'“) (3.10)
Inin
A necessary condition for obtaining the ML estimate is
L2, Y i)
34Ty Yy 0
20

vhich leads to

" ar (
8ryp) = E ¥ Zxue g (3.11)

.O
a’lu

However, since the squared terms are non-linear in Ynin Ve have to use
numerical methods to solve the MLE problem.




THO report
Page
22
1
3.2 Numerical methods
In this section, only the outline of the Gauss-Newton and Newton method
is given. Extensive details can be found in [Gmelig Meyling, 1989-1].
The Newton method uses the gradient g(y“”) related to some estimate Ixin
to obtain a better estimate in the sense that the objective function
, l(Z,,y”‘) has a lower value than l(Zh,yl“).
The Newton method assumes a local quadratic behaviour of the objective
l function, i.e. the function is written as a Taylor series expansion of
)
\ two terms:
!
‘ 2y +8) = £(y) +g(M)7Ts + k s76(y) s (3.12)
!
where
32 2(y)
. G(y) = (3.13)
t y 8y8y’
(See Appendix A for details on vector/matrix differentials).
The minimum of the right-hand side is obtained if s satisfies
] G(y)es = —g(y) (3.14)

s 1s referred to as the Newton direction.
By defining the N dimensional vector f(y) containing the residuals

rk(yk"), k=1,...,N and the N x n Jacoblan matrix J by
£(y) = (r,(1), 1,7, ..... C 1t
(3.15)
at(y)
- ==

g(y) and G(y) are rewritten as
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- I
8(y) (¥) &y (3.16)
6(y) = IMNI) + Uy
where Q(y) 1is equal to
Q) - £ .y 5 3.17)
- T — .
y 1 F v ayay* ¢
The Newton direction is found by solving
@MTI@P)HUY)) o8 = I (¥)E(y) (3.18)

In order to find a descent direction the matrix G must be positive
definite. However, when the residuals are large 6 is not guaranteed to
be positive definite because of Q. A better alternative is to neglect Q.
Since J'J is positive definite, except in special cases where dependency
between elements of y, occurs (Cmelig Meyling and de Vlieger, 1989], s
is guaranteed to be a descent direction. This method is referred to as
the Gauss-Newton method. A numerical robust way to solve (3.18) is to

use a singular value decomposition (SVD) of J(y):

Jy) = vzV (3.19)

where U 1s a N x n orthogonal matrix, Z a n X n diagonal matrix and V a
n X n orthonormal matrix. The diagonal of X contains the singular values

of matrix J in descending order:

L2 0, (3.20)

Moreover the following relations hold:
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VYV -~ W' = 00 - I
J7J - v 23T (3.21)

@1 v 0,>0, i=1,...,n

The matrix V contains the eigenvectors of J'J and the squared singular

2
1

not have full rank one or more singular values will be zero and a pseudo

values o% through a: are the eigenvalues of J'J. Note that if J does
inverse of J'J must be used in determining a search direction, i.e. the

! search is performed in a lower dimensional space. In fact the SVD

; decomposition accounts for the bad conditioning of the TMA problem. When

i some singular values are much lower than others one can cancel those

; directions corresponding to the small singular values [Gmelig Meyling,
1989]. Bad conditioning is related to measurement noise and geometry of

the own ship and the target ship tracks.
The outline of a Newton-type optimization method is as follows:

' 1. Start with an arbitrary estimate y for i=1
Determine a search direction s (Newton or Gauss-Newton) by
solving equation (3.18).

Perform a line search along the direction s

Y 4, Check convergence criteria. If not satisfied increase iteration
counter i and goto step 2.
5. Calculate the inverse of G which is an estimate of the error

| covariance of the maximum-likelihood estimate y?ﬁ -y

Details on Newton-type methods can be found in [Gill, Murray and
Wright]. Specific details on Newton-type methods for TMA problems are
described in [Gmelig Meyling].
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: 3.3 Unbiased Estimates and the Cramer-Rao lower bound
The estimation error e(Z) is defined by
8(2) = Yyjy - Yy (3.22)
} Any unbiased estimation Ixin of the parameter vector y, is characterized
!
E(e(Z) )} - J-GZ Z dz - O
t 1¥x z (2) p(Zlyy) (3.23)
where E{el|y} denotes the mathematical expectation of e knowing y. If we
! consider Yyx @8 an biased estimate of y, with bias A(yn) the expected
) value can be written as
| E(e(Z) [y,) = A(yy) (3.24)
Differentiation with respect to y, leads to
‘i
d w(p(Zly,)) ax(y,)
J' e(2) ———p(2)y)az - 1, + —H4 (3.25)
ay, 8y
Now the error covariance matrix A, is defined as follows
b= [L1e@ - auplle@ - aap iy ez
r (3.26)
= E([e(Z) -~ My [e(Z) - Ay [7y)
The vector oun(p(Z(y,))/8y, is a stochastic vector with expectation equal
to zero and a covariance matrix equal to the matrix M:




TNO report

Page
26

aw p(Z|y) ) (3w p(Zly ) )"

n-E([ P Iy,.][ P "]Iy,,)

3y, ay,

5% B(Zlye) (3.27)

w p(Zly

- CE =T yy)
ay“ay“

The n x n matrix M is called the Fisher information matrix. The Cramer-
Rao theorem (v,Trees, Eykhoff] states that for any unbiased estimate of
Yyin the following inequality holds (see appendix C):

A,z M! (3.28)

The meaning of this theorem is that for each unbiased estimate the error
covariance matrix has a lower bound, which is the inverse of the Fisher
information matrix. The lower bound can be determined exactly if the
real target state y, is known. When Monte Carlo experiments are used to
show the performance of the MLE method it is thus possible to determine
the lower bound. When the estimation method is efficient the error
covariance matrix is equal to the lower bound. The error covariance
matrix can be either estimated from the Monte Carlo simulation results
or by using the matrix (J(ynm)TJ(ynw)+Q(ynm))-1- The estimated error
covariance matrix can be compared to the lower bound in order to get an

efficiency measure of the MLE.

Using the definitions of g and ¢ the matrix M can be rewritten as

M = E(g(y,)8(7,) I7,) =~ Iy N3y (3.29)

Unfortunately it cannot be proven that Ixin is unbiased. Moreover omne is
not able to determine an analitic expression of the bias A(yl).
Experimental results in [Gmelig Meyling and de Vlieger, 1989-2] show
however that in many cases the MLE will be unbiased and one can use the

Cramer-Rao lowerbound to verify the efficiency of the MLE method.
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3.4 Quality of Fit and Confidence regions.
Given an estimate y the likelihood was defined by (3.6) and (3.8):
Nz 3 -1
P(Zly) = (o0 (6D mp(-H(Z,y))
-1
- (3.30)
N oz -z
22,y = T (52
ERE k=1 o;

The quantity £(Z,y) at its minimum is distributed accc .ding to a chi-
square distribution function for N-n degrecs of freedom, where n is
equal to the dimension of y. Suppose we have a realization Z; (a set of
measurements) and an estimate ymj. Other possible realizations Z which

lead to other MLE estimates y with a likehood 2(Z,y) such that

€z, y) > 22,y (3.31)
result in MLE solutions which do not fit the data Z as well as yTF fits

ZR' Hence the probability Pr(l(Z,y)>£(ZR,ymj) can be used as a
quantitive measure for the quality of fit of yiE:

Pri2(z,y)>2(z,.¥*)) - ol | na(z,,yE)) (3.32)

Q(v,a) is refered to as the incomplete gamma function:

Qe-,a) = 1 | %! me(-x)dx (3.33)
T'(v) a

If the measurement noise realizations resulted into realization ZR with

a low probability of occurrence the likelihood of the ML estimate will
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be low and the probability 1-Pr will indicate that there is a high
chance that someother realization would fit better. However, the quality
of fit may not be confused with the confidence in the estimate. One may
obtain a bad fit, for instance because of a bad measurement, but still

obtain an excellent estimate and visa versa.

Let’s now consider all possible estimates y for which the likelihood is
larger or equal to a lowerbound a p(Z-Zkly”J), for 0 S ax 1:

a p(Z~Z |Y"F) = p(Z-Z,(y) = p(Z=Z,[y""") (3.34)

Hence we select all estimates around y*% for which

A2, ¥) = 2(Z,y) S 2%, ¥ - 2 v a (3.35)

The set (y) satisfying condition (3.35) defines a likelihood region R in
the state space. The probability that y lies in the region R given the

measurement set ZR is:

Pr{yeR|2=Zg) -'L p(y12=25)dy (3.36)

By using the Bayes rule we obtain

P(Z=2g 1Y) p(y)
g P(Z=Zg1y)p(y)dy (3.37)

PlylZ-zg) =

Note that the nominator of (3.37) is a normalization constant. The
desired probability can be calculated if p(y) ’s available. Remember
that p(y) represents the a priory knowledge about the target track and
that the MLE method does not account for this knowledge. The worst case

situation is at best represented by a uniform distribution:

18" -8/2 %y, S8/2, 1=1,..,n

16 A0
ply ¥y, S -8/2 or y, s 4/2

(3.38)
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Hence, for A+« the a priori knowledge vanishes. Substituting (3.38) into
(3.37) results in a probability

IRP(Z-ZRIy)dy

Pr(yeR|Z~Zg) = 7 (3.39)
® jyp(z-znly)dy

Substitution of (3.30) leads to

[ et-neczg.yay
Pr(yeR|2~Zg) - (3.40)
jym(-u(zk.y))dy

which is the probability that the real target parameters lie in a
confidence region R defined by (3.35) based on the knowledge of the
measurement set Z.. In general the boundary of R will not be an
ellipsoid because of the nonlinear behaviour of the likelihood function.
The shape of R can be found by using a Monte Carlo Integration approach,
i.e. by producing & sufficiently large number of random vectors y, which
are drawn from a uniform distribution function that fully covers the
region R, one can display those vectors y graphically that satisfie the
condition (3.35). Simultaneously one can approximate the integrals of
(3.40) pumerically by using both the accepted and the rejected vectors.
The displayed points are scattered in the region R and hence show the
shape of R.
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4 RESIDUAL DERIVATIVES

The application of Newton-type algorithms implies the usage of first and

second order derivatives of the estimate z , with respect to the state

estimate ATE This Chapter is concermed wiktltz the determination of these
derivatives. First we focus on bearing and frequency residuals with
respect to direct-path and bottom-bounce measurements. Then range,
course and speed residuals are considered in Section 4.2. In Section 4.3

second derivatives of the residuals are determined.
4.1 First derivatives of bearing and frequency residuals

The general vector form of the first derivative of a residual rk(ykln) is

equal to
31‘,(?,4,,) __ —1_ ah, (F(&, ,,G()'““.))) .1
Yyn o Fyin

Throughout this Chapter we Just concentrate on the derivatives of h
instead of rk(y“'). According to the rules of Appendix A the following

expression is obtained:

85 (yl “!) _ aG(y!m) O: . aF(ﬁm) ab}(ykm) 4.2)
un W yn TRy 3y I

which can also be denoted as

azI s _ ax'“! .Q: "az! in (%.3)
nin o Oy

where z;ll = by 0
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In most cases computational efficiency is improved by calculating the
derivatives from explicit analytic expressions instead of using (4.2) or
(4.3). However (4.2) and (4.3) will serve as a guide to derive the
individual expressions of each element of each type of residual
derivative. First, consider the direct-path bearing estimate bk“. The
result of equation (4.3) {is

b,y . axy 1y o .aumz(xu“.yk W (6.4
kN .
3 3y x 3%\

Further we have

Ry(xc0S Dyjn  ~RyieSI® Bujs 0, e 0,, .‘
sIN bgx cos byy
Xy \w . * witdees Gl =vibisie CW) 0 (4.5)
_— = L e 2,2
anin 022 et 18 Gi) cos C(i)
< e, I
{ Oz e 0,2 q

Note that (4.35) 1s a block diagonal matrix with m+l submatrices of
dimension 2 x 2 and one q x q identity matrix on its diagonal. Therefore
it is much more convenlent to rewrite (4.4) as a number of expressions
with respect to bearing, range, speed and course of each leg, and each

source frequency:
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ab Y, -
—kr o Rnlnms(bnln)'R_ElL: - Rl!llt”“(buln)'E‘K&z"'m

—xlE o (b )-Z‘-L" + cos(b, )e—
N 2 RIN n2
aRnln . Rxln Rkht
(1) (1)

—Labfi‘; - v oos(c,‘,n).—l—hy*f L v;;;sm(c,‘,;;).'_L.._‘_"k ;Tkin
ac

RiN Rklu Rz]n (4.6)
b Yy T(H — T“)
v sm(cﬁ'})- . + oos(C'('?!:)- 2

NN In IN
ab, |y -0
afo““

The result of equations (4.6) is shown in table 4.1.

b, ix _ Run cos (byy = by )
b R,
NiN IN
ab
hiho 1. BN -
8Rn|' Rkln sm(b”‘ bxjn)
b T“)
k¥ XN (1) _ ety
ac(T) = R, Valx 05(by 1y = Cyjy)
NIN N
{ =1, , m
b T(“
- - kB _ W)
avid Rx ”"(bxln clll)
NN In 1=-1, , m
LN - 0
at‘o“l

Table 4.1 First derivatives of Direct-path bearing estimate bk“‘.

The estimated direct-path frequency equation is denoted by
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£ 1 .i.LLL 7
fk,j]l = o,’!l( T e ) %.7)
where fogll is the estimate of source frequency fo; as a result of the
set Z' The derivative with respect to Yypy €81 be derived according to
(4.3). It is however easier to obtain the derivative straight-forward
from
af £ . a8t af T
“haln oo 03 ZTklF o, _Togiw g _ klm (4.8)
A ¢ gw gy c

Note that 4f

/ay”' is equal to e where e, is the identity vector

o3lw 2(m+1)+)
with a unity element at the 1th position. Substitution in (4.8) leads to

af £, at £
i 111, T YA 1S P R 11 BN S (%.9)
ay'l“ ¢ ay'I' c (mtl)+]

The first term of (4.9) depends on the range-rate derivative iklﬂ:

. (1) _ 208 (1) _ 208
L™ (v,t x, )sIn bxln + (vy k Yeos bkl“ (6.10)
b ¢ ¢, < ) or t, - ¢l
For the sake of convenient notation we introduce v:"‘: as
TAN _ (1) _ 208 o (ot1) . 208
Viin (vx X, Ycos bkl' (v, b/ )sin bkll .11)

eV gt <t or g - t®

Equivalent expressions are :
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. 1) (1) _ go8
B (vxl'stl Ckll - )sin bxln
(1) 1) _ 08
+ (V|08 Cpjy = ¥y )oos by
TAN (1) (1) _ 208
Vein = (VeI Gy — X)oos by,
t4) (1) _ s08
- (vkl'cos Ckln - % )six bkl'
Differentiation of (4.10) with respect to Yuin leads to
. ()
8Ty in _ VIAY Byin , ) sn(b, . ~ C{4)) 9Cxix
3 k(N 3 k[N k|N iR 3
T Ynin NN
vt
+ cos(by ), — cﬁ;) ——uix
3yin
(4.12)
avTa ab aclt)
- - By T ) s - Ol M
3Yyiw 8¥y4(x Yyin
avid)
- sm(b,,, — C)y —ME
kN RN
3 in
Note that Cﬁ:) - C:?,’.) for all k since the TS course at leg i
remains constant. The result is a function of the bearing derivatives:
at ab
—xly _ TAN " klN ) _ )
a7y, Viin 270, + VS~ Cyin) 04
N XN
(1)
+ coscdy | = Cypy) €y,
(4.13)
avia b
- it 1. 1) e
27 Tain g \ + Yy 08By — Cyi) &40,
]
(1)
= sm(by = Cypp) 04,

Substituting the bearing derivatives of Table 4.1 in (4.13) leads to the

result summarized in Table 4.2.
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af
8w . Zfum v alx cos(byy = by )
Bb“. [+ In
of -f I 1
—-!-u—aR.l L R : LI V:?: Rk— u.(blll - bkll!)
] |n
af. it 3
et 311, 03lR (1) )
ac,‘,?}, .  Nx sin(b, | = Cyjy)
D o £, < e o £, - e
oTAN 208
ﬂ (x) Velr ;,u (1)
- . R, cos(bkl" C““‘)
N
af -f
—kilE L 0K e - i)y
(1) 1314 NN
av”, c
WD o t, < e o £, - L
£ TA T“’
4 0N _xin "X sn!(b - cid)y
c R1| NN
N
af £ )
kiln _ _ Coglw m |l_| ;. cos(b, . — C)
actH Vrix k(N N|N)
1] ¢ Ryiw
t, < 4D op t, > e
IART ()
Ofyw . fouw VamTin e
- sin(b, Cetx)
vl c x|N N|R
NN I8
t, s 41 o £, > £t
ffzun -1l Tyin
8f°“. c
af
Zmje _ o im]
af
o1|n

Table 4.2 First derivatives of direct-path frequency estimate fk“'.
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4.2 First derivatives of range, course and speed.
i
: The first derivatives of the course and speed estimates are obtained
straight forward:
‘ (1)
‘ aqln - .
I 2141
(4.14)
1)
av, ¥ . .
I 2142
where e, i{s the identity vector with a unity element at the jth
position.
The Range derivatives are obtained by applying the general equation
(6.3):
]
' .6&1! - a_‘!l! .Q: ".il}ﬂ! (4.15)
‘ yn  am T X
!
where
\
Rin T
- [smbkl. oosbk" 0 ..... 0] (4.16)

X, |n

Carrying out the matrix multiplications leads to the results in Table
4.3.
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LR
ab'“ = —Rnlu sxn(b“‘.- bxlu)
Ryin - b~ b, )
aRlI cos( NIN x|N
N
anﬂn 1) L) W)
ach) T Ty n- Vil ST (by = Cygpp)
UL i =1, , m
aF&ln (1) )
PRI Ty n cos(by 4= Cyiw)
MW i=1, ..., m
Ryin - 0
8f°““
Table 4.3 First derivatives of Range estimate LN
|
4.3 First Derivatives of Bottom-bounce bearing and frequency
The bottom-bounce bearing and frequency derivatives are obtained from
the BB-expressions of Section 2.4:
A
C:s+mccos(a:‘eosﬁk), 0<p sx
bP - (4.17)
C® - arccos(a)® cos B,) xS f <0
The variable % ix is defined as
o = M (4.18)
(R w*D)
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in correspondence to the definitions in (2.21) and (2.19)Y,

Similar, the bottom-bounce frequency estimate is equal to

T
BE x]n
featn = Lo (1 = o ":__L)
(4.19)
The derivative of b® can be expressed as
BB

by )y _ danccos(u) . 2PN, os Born Soyin BRus

Yy Bu L Ry Myiw (4.20)
where u = a )y 08 ﬁxlu and

8 Arccos(u) -1 (6.21)

du (1—«:{“‘,oos.z(bm))”2 )

Further

da, p?

—klF BB (4.22)

Ry |y -(R:nw + D)™

The range derivative in (4.20) can be found from table 4.3. Hence the

result can be found from

BB BB BB
ity . ulx Py, iy % Ry
aw  Tpyy yn doyin Ryin By (4.23)
1 Remesber that we still assume °‘rs’°os to be zero. Note that when nrs-n“ is substantiasl

large, we also have to reformulete the direct-path bearing and frequency squations by
using the bottaom-bounce squations and replacs DIB by Dm,.
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where

8b!“| _ Oy (By 1) -518(B, )
abknl (1"°‘:|n°°sz(bxln))“2

abn!

Palv . - msz(pkm)z - (4.24)
Bay |y (=ay - 05" (By )

o n _ Dis

2 2 \3/2
aRtIN (Rklu + Dsn)

The direct-path bearing and the range derivatives can be found from the

tables 4.1 and 4.3 respectively. There is one trivial case:

a2t
—xlr Lo j=1, ..., q (4.25)

afo_ﬂn
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The results have been summarized in Table 4.4
08
B = by ~ &
ab:ii “kLns"'(ﬁkln) .smv(ﬂkl“)
z 2 172
abklu (1"°xln°°s (pklﬂ))
ab:i' B cos(ﬁu“)
2 2 1/2
L (1~ g cos™(By )
day |y 4%
aRklN (Riln + adz)s/z
Table 4.1 Table 4.3
i $
BE &B BB
3y pw _ Oy 30y + byjy day )y BRyy
by 8b, 15 Bgix Bay 1y R,y 8byy
B8 5B BB
Obly _ opl Oy, 3By dayy Ry,
Ry |x 8b, 1y FRyix ay |y Ry ORyy
3B BB BB
Obhe _ Obhhe Bby. |, SRl Bay Ry,
1) (1) ()
8Cy1x b, |y 8Cx)n oy )y R,y EChy
i =1, , m
BB BB BB
by 1y - 3y 1w 8y in . by 1w 8% Ry
(1) (1) )
Vhin 35, 1x AVyix Bay )y ORy 1y BVyin
BB
M,
8fo‘”.

Table 4.4 First Derivatives of Bottom-bounce bearing.

The BB frequency can be writter as a function of the source

fll
k3N
the estimated frequency

frequency f and the factor L

(LK fu In
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BB
foain = Loy + S wlEiyin = Loy (4.26)
Remember that fk““ is equal to f::lll if D), is zero!
The first derivative can be calculated straightforward by using Table
4.2 and 4.3:
BB .
t‘:lfI . _ - af, _ £, T aal " 65 ¥
3y n 8w ¢ R, |y yin
(4.27)
A 1y
+ (l—aklu)—--’-L
ayum
The result is shown in Table 4.5.
Table 4.2 Table 4.4, Table 4.3
I3 $ {
BB .
il _ &y Oy foswTn 8% FRygw
N
8b"|“ abm c 6Rk|“ ab““’
BB .
3w o m _ foymtuiw 9% Ry
k| N
3Ry 3Ry ¢ R,y Ry
BB .
Oy _ & Ofyaim _ FoywTuiw oy n SRy
1) N A1) )
BC'“‘ 8C'|' c a&m BC”“
i=1, ..., m
BB .
Ofyyin _ o Ofyw _ FoyinTuiw o w SRy
) N (1) (1)
av”, 8vi“ c aRk“ 8v'"
BB )
3w _ (1-a 1iHL)
850“' LI

Table 4.5 First Derivatives of Bottom-bounce frequency.
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4.4 Second derivatives of range, bearing and frequency residuals

The second derivatives of direct path and bottom-bounce bearing and
frequency estimates are obtained from the Tables 4.1 through 4.5 of the

previous sections. First we focus on direct path derivatives. From the

first order derivative abklu/abm in Table 4.1 we obtain
2
i.'_’m___ﬁmm(b — b )_a_Rk_L“ + —1—cos(b - b )Eﬁl!!
3+3b R: R[N k|N IR N|N k|N IR
N[N I8 IN
(4.29)

b ab
+ 5“—[3 SI“(bNIN— bkln)(—*—w -
Rl de 8e

where o indicates one of the estimated variables in Yx(n Note that the
second term is only non-zero if « indicates RNIN' Similar, when ¢ is

equal to b,  the term with abm/a- will become non-zero. Many of the

N[N
terms can be expressed easily by using first order derivatives. In this

way the second derivatives can be expressed by:

aszln - _1__ abkln aRxIn . i_ abklll 8Ry)y
3 abnl! Rxlu ab“l“ 3 R”“ 6b“|“ 3

(4.30)
‘R, Py Pupy_ Py
MoRy, 8- a

This procedure is repeated to obtain second derivatives from all the
first derivatives of Table 4.1i:




INO rapport

Pagina

a% 1 3
k8 — sm(b'l“ bkln)&m
8+ ARyiy Riix 8-
1 ab ab
= cos(by= by ) - iy
Ry 3. 3.
azb T(l) 3
T LT o sb - gty Pl
8+3Cy1y RE, MU TN, (4.31)
_3(;3 ) b o b, 1 acr(;ih)w )
- R, iy ST Dy = Cyy) € 3. 3.
¥
T Fuiv
R _ oty Vaiw
+ cos(bkm Cnln) 2.

1]

3% T 3
P D e - o) a_P},_m

P 2 kN~

8+dvyn Rix

T b aciiy
- k¥ cos (b, |~ cﬁ:‘) (—=lE . Z7ElN

RKIN Qe 3

2

‘b -

43-8f0'1

By using the first order derivatives expressions as much as possible the
result in Table 4.6 is obtained.
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2
8°by 1n - 1 ab, ., 3R, + 1 8b,, Ry,
e dby), Ryin by 8* Ryin Sbyy 3°
\ abkln abklu _ abuln
X + R.“, ( )
! aR'" ae 3e
2
by jx - _L b1y aRkIN_i b1y b1k _ abnlu)
8+ aRyy Reiw SRy 2° A 8.
2
w1 by Ry by BV
(1) ) TYRpyTY
8e 3Cy 4 Rn acuw a- Vyin 9Cyin 9°
)
+ vty Puin By i
M av %) 3 3
i=1, , m
2
8w _ L Oy Ry
1) 1)
a» av”“ Rk’“ av”“ de
(1)
T - 1 abklll abkl aCulu
Ty} )
VN ac“u de de
‘ i - 1, , M
: 2
} 3 b&ln -0
| 8- af,,
Note: * {5 an element of y”'

Table 4.6 Second Derivatives of Direct-Path bearing.

In the following the second order derivatives of the direct-path

frequency estimate f“ are obtained in a similar way:
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2 £ 8
o _ ., —I—R; B Gty cos by, — bk",)—&l'
3. aby,, R © de

1 £

)
—guln TN cos(bnl‘ - bkl.)—&1

- &In < kin e
£ 3byy 8 (4.32)
+ &U —oilx v:’l‘: sm(b“Ill - bkln)( E_ _xl¥ )
Rkll c de ae
£ TAN
- %::j c . °°s(bn|n bkhl)
N
Ryl v:mln cos (b b )afoglu
Rxln c RIX LIL ISP

The derivative av:’,‘:/a- can be obtained from (4.13). The elements of
3£, , 4/ 87y x0Ryyy aTe obtained in a similar way:

2 TAN
Phan _ w2 Wy, 1 g 1ok
8« Ry Ry, Ry, a3 fosin 2° Vyin 2°
1 ab b
- ifull —kIN _ i_l.l.l) (4.34)

Ryin ab"' a» 8

The elements of a‘fm,/aymac“’ are determined as follows:
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2 1) TAN
Pl _ L 0 ey, 1 35 Vi o 30y OV
. ac®) ) a, D ,n(1) 3, 1) g4,
a- acih £, actl 8 i acl) 8 c acith @
(1) TAN
Ly O (ab s _ 9Cki , , Soin Vily %y 3Ry %.35)
L avit) 2. ae ¢ Ry, 96 o

Similar, asz“n/ay“l'avﬁ; is stated below:

2 7o)
Thym 1 O oy 1 3w Py uin,
PTY) ) 3. 1) aa(i) . .
8 av"“ f““‘ 8v“IN 3 Vain acm 3 )
(4.36)
TAN TAN
+ foum Yiin %uin Baw  foyin Puin MVilx
Q) 3, TR
c Rkl" avn“' a c av“l“ 4

The derivatives asz“'/aynl“afo_”" are obtained straight forward from the
range-rate derivatives (4.13). The result is summarized in Table 4.7.
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Table 4.7 Second Derivatives of Direct-Path frequcncy.

Since all bottom-bounce expressions are range dependent it is more

convenient to determine the 2™ derivatives of the range Rkll first. The
result is stated in Table 4.8,
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Table 4.8 Second order Range derivatives.

The bottom-bounce bearing derivatives are obtained by differentiation of
the expression (4.23):

%™ 3B 5p ™ 3% a%® 3 3
ouw  _ iw ouw |, Pun FPuw , P fous Raw

8+ 8yyy 8° b,y dyy, b, |y 8+8yyy 8¢day), SR, Oyyy

b 3% a3 82 (4.38)

L% o R, Puim fown Raw
day )y B8Ry, dyy, Oy, R, 8- 3y,

We memorize that the first order derivatives in (4.38) are already known

from the Tables 4.1, 4.3 and 4.4. The derivatives d”b}|,/3-3b, , and

a‘b:T./a-aam can be found from:
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2 12 cos? -1/2
3. abm- (a. (10 |c05"Ay ) Yo, | SI8(B, | )s108 (B, |\)

(4.39)
1-a? 2 -172 8
+ ( ~a | C08 pkl') PR (“kln s"(pkll) sxsu(ﬂkl'))

%k ]
T = o (ool )R ) cos By )
" i ) (4.40)

ab
+ (1-of ycos’, )72 sxu(ﬂﬂ")a—.“-u'

It i{s obvious that

yvz . il day 1y

8
— (1-a?, cos?B
3o % {n xIN (1 l,zmmzﬁk,“)ﬂ/z a3

(4.41)

+ _L'lz ,zcnsﬂ!“sxnﬂk : . 8b, |y
+.
(1-of Il‘c:osz A 2 3.

Substitution in (4.39) leads to

%001 _ sy
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NE ( (":Ins“(ﬂkln)mzﬁxln
3
+ (l—a:“coszﬁkl')sm(ﬁk"));—.:m- + (=005 (B )81 (B, )
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+ (oo, oy 008 (By 1)) SHE ) (4.42)
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oy 8b
et i 7 B o0




TNO rapport

2,38
a%?

8¢ Bay 1y

The 2™ derivative d%a , /d+d in the 4th term of (4.38) is equal to
@ I In

2 _ap2
_a_:le - % fﬁh‘ (4.44)
8+ ARy (Rxln + Dgp) 8.

The result is recapitulized in Table 4.9.

ab a
—k]r (1—a:|.coszﬂﬂ-)-3/2(31!(ﬁkl.)a.—ku - akl'-cos:’(ﬂklu)a—.a!m) (4.43)
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Table 4.9 Second order bottom-bounce bearing derivatives.

The bottom-bounce frequency derivatives are determined from (4.26).

By partial differentiation of f::‘-

we obtain

with respect to fo“", fk“' and Rklu
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2488 2.BB BB 2 2¢BB
Tt | e e, i i |, i R
3¢ 3yyx 80f, 1y OVuin Ofyypy 3°9¥yy  B°ORy, By,
(4.45)

BB a2 288 BB 2
L O Ry | PERy M | O Py,
LWL a'afoun Yy)s afooln 8°3yy)y

The first derivatives in (4.45) are known from the Tables 4.2, 4.3. and
4.5. Moreover azfmn/a-aym and aznm/a-aym are obtained from the
Tables 4.7 and 4.8. The remaining factors to be derived are:

BB
af] I8

= %x
afk““
2,88

fiin _ Boygn Ry (4.46)
de afh“n BRH“ de
2

Hmll._ -0
a-ay.“,

and

288 ) 2
fiim - yiin - aﬁﬂ!)&_‘,ﬂ! - fon ulx Toyn (4.47)
a- 3&', de de 3Rk“' c 3 aRk'"

Note that terms with afull / ag‘“‘ become zero since we use the partial
derivatives of (4.26) with respect to kall and Rkh! to obtain (4.45).
The result is stated in Table 4.10.
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Table 4.4 Table 4.3 Table 4.2 Table 4.7
2,88 13 13 2 i
"t _ Ooygn Ry ot 1w + o °f sin
3° 3y OR8¢ 3%y ™ 80 3y
Table 4.2 Table 4.4 Tubly 4.3
+ Chain _ ¥oyn Fon Ry
ge ae ap“,, aym

Table 1.0 Tnblo‘Q.S Table 4.4 Table 4.3

. 2 2
= fosim fm(a 4w ORyw 9oy 3Rk
¢ d Ry Bygy IRy +3¥yy

_ Bayyy Ry

e
. 2@+
3R,y d

Table 4.10 Second order bottom-bounce frequency derivatives.
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5 CONCLUSIONS

In this report the outline of the MLE method for TMA is described. The
method requires some kind of optimization procedure. Since TMA problems
are often ill-conditioned a robust numeric optimization method is
required. In [Gmelig Meyling] a Newton-type method is proposed by which
TMA problems can be solved very efficiently. This report describes how
numerical experiments can be checked by using the Cramer-Rao bound and
moreover that the MLE may not produce unbiased estimates. Newton-type
methods require first order derivatives of the function to be optimized.
Near the optimum also second order derivative information can be used to
improve the convergence of the method. Although derivative information
may be obtained by using finite differences much computation time is
saved by using the analytic expressions which have been derived in
chapter 4. The experimental results and specific details about the
Newton-type method which we prefer can be found in two related reports
(Gmelig Meyling, Gmelig Meyling and de Vlieger].
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SOME MATRIX DIFFERENTIATION RULES

Suppose x, y, £ and m are arbitrary column vectors, M is a matrix, and f

is a scalar function, then the following theorems hold:

1)

(2)

3

4)

(3

(€)

7

(8)

If y = Mx then

dy = Mdx implies dy/dx = M' and conversely

If f(x) = m'x then

df = dm'x = m'dx implies df/dx = m and conversely
If x = mf then

dx = mdf implies dx/df - m’ and conversely

dz/dx = dy/dx . dz/dy
If f(x) = x'Mx then

df = (dx)'Mx + x'Mdx implies df/dx = (M+M')x

and conversely.

df/dxdy = d(df/dy)/dx

1f £ = x'My then

df = (dx)'My + x'Mdy implies
df/dy = M'x  and dzf/dxdy =M

1f £ = x'Mx then

d’f/dx” = M'+ M
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TABLES OF CHAPTER 4

In this appendix the tables with first and second order derivatives are
repeated as a quick look facility for those readers who are only
interested in the results of Chapter 4.

ab,
_Labkll' - _L::IN cos(by )y = by )
NIN N
8b
_—l—an: . I Rk SI"(bnln - bkln)
IR N
ab )
el - SRR Gl cs(h - O
acC Rk
NIx L i=1, , m
(1)
Zele L2 g, - o
av, Rk
N|R In i=-1, , m
8b! N _
afom

Table 4.1 First derivatives of Direct-path bearing estimate bﬂn'

. ——— ———




TNO report

Appendix B First and Second Derivative Tables

g k[N

(1)
aCyix

9f, 1y

1)
av”“

-f R,
0jln 1AW Nyin
= PR 2l co8 (by g — by |y)
Rkll
- _-LLTMl_sm(b - b))
c Viix NiN 131}
I8
- _ij v sin(b, . - )
c Viiw SO = Cain
€4 < ¢ < e or £, - @
£ YTAR (4
03N (1) Viin Tyx 1)
- Vum cos(by )y — Cyy)
Ryin
- -_f".t.mm(b - ¢t
c x|N nln
NIC £, <t or £ - @
TN 1)
+ —C—-im RATEN stu(by |y — ;1;)
In
£ TAR (1)
0“ (1, !I! kN (1)
T VN cos(b, |y = Cyy)
IN
€, < D op g > t®
VTR ()
- —J-I—‘:: RTINS SIN(by |y — c(lu)
In
t, stV or g >
-1 - Txin
[
=- 0 iw]

Table 4.2 First derivatives of direct-path frequency estimate f

k3IN"
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Page

35 |
L - Ry 518 (by — bxln)

ab““.

_aﬁ.l.L_ cos(b,

8R.|“ L bklli)

aRkIH - T(i) V“) sin(b  — C(l))

actd) kN N[N x|n N|N
min 1-1,

R
X 1) P ¢Y)
avid) Tk,ll m(bkln C”“)

NiR 1=1,

&11._0

650“'

Table 4.3 First derivatives of Range estimate Rm‘.
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Table 4.4 First Derivatives of Bottom-bounce bearing.
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f Teble 4.2 Table 4.4, Table 4.3
13 4 4
BB )
e, . 3w Founbyin 9%0m IRy
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abm ablll c 3Rk|' Bb'l'
BB .
9ty iin _ oy O _ LoyinTuin 9%y Ry)x
x
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i\ Table 4.5 First Derivatives of Bottom-bounce frequency.
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Table 4.6 Second Derivatives of Direct-Path bearing.
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Table 4.7 Second Derivatives of Direct-Path frequency.
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Table 4.8 Second order Range derivatives.
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Table 4.9 Second order bottom-bounce bearing derivatives.
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Table 4.10 Second order bottom-bounce frequency derivatives.
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This theorem can be proven by defining the vector X as

8(Z) - Ay

(c.1)
X = | am(p(Zlyy))
ay,
The covariance matrix of X must be non-negative definite:
ax
A I+ -—-——'(y )
L[ ] n ay
E(XXT|y,) = A N 20 (€.2)
I +(——20t ¢
n a .
Hence, for any vectors x and y the following quadratic form must be
nonnegative:
ax( ax(yy)
xAx + xT(I+ a_’rl)y + yi(I, + TZL)’x +yMy =0 (C.3)

Tx ]
Assuming that both A  and M are positive definite the minimum of the
left expression is attained for:
- ax(y,)
y--¥Y1 + s/ LA (Cc.4)

ayi

Substituting (C.4) into (C.3) leads to the following condition:
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c.2
a(y,) . 3 (yy)
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Hence, when the estimate has a bias A(yl) the Cramer-Rao theorem changes

into:
ax 3\
A 2 (I + —(ZE—))M“‘(In + ——EZ“l)T (C.6)
ay, Yy

If A(y') is zero, condition (C.6) reduces to (3.28).s
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